MATH 54 - MIDTERM 2 - BONUS

PEYAM RYAN TABRIZIAN

Name:
Instructions: This bonus question (the same from Midterm 2) is optional and is due on Monday, July 16th, at 2 pm in 4 Evans! (our usual classroom). It counts for 1 point. You are not allowed to collaborate with others and not allowed to use the textbook or other outside resources (like google) to solve it!

Bonus In this problem, we're going to use the Wronskian to find the general solution of a quite complicated differential equation! This should illustrate yet again the power of the Wronskian!
(a) Consider the differential equation:

$$
y^{\prime \prime}+P(t) y^{\prime}+Q(t) y=0
$$

Recall the definition of the Wronskian (determinant):

$$
W(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{2}^{\prime}(t) y_{1}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

Where y_{1} and y_{2} solve the above differential equation.

Calculate $W^{\prime}(t)$ and express your answer in terms of $W(t)$.
(see hints on the next page)

Hints:

1) You HAVE to use the fact that $y_{1}^{\prime \prime}=-P(t) y_{1}^{\prime}-Q(t) y_{1}$ and $y_{2}^{\prime \prime}=-P(t) y_{2}^{\prime}-Q(t) y_{2}$.
2) Also recall that $y_{2}^{\prime} y_{1}-y_{1}^{\prime} y_{2}=W(t)$
(b) Solve the differential equation found in (a).

Hint: The general solution to $y^{\prime}=f(t) y$ is $y(t)=C e^{\int f(t) d t}$

Note: From now on, ignore the constants, i.e. in your answer in (b), set $C=1$
(c) From (b), we get:
$y_{2}^{\prime}(t) y_{1}(t)-y_{2}(t) y_{1}^{\prime}(t)=$ \qquad (your answer from (b))

Solve for y_{2} in terms of y_{1}.

Hints:

1) Divide this equality by $\left(y_{1}(t)\right)^{2}$
2) Recognize the left-hand-side as the derivative of $\frac{y_{2}}{y_{1}}$
3) Integrate, and solve for y_{2} in terms of y_{1}. You answer will involve another \int sign! Again, ignore the constants!
(d) Let's apply the result in (c) to the differential equation:

$$
y^{\prime \prime}-\tan (t) y^{\prime}+2 y=0
$$

(here $P(t)=-\tan (t), Q(t)=2$)
One solution (by guessing) is given by $y_{1}(t)=\sin (t)$.
Use your answer in (b) to find another solution $y_{2}(t)$!
Note: Again, you can ignore the constants!
Hint: You should use the following facts, in order:

1) $\int \tan (t) d t=-\ln (\cos (t))$
2) $e^{-a}=\frac{1}{e^{a}}$ and $e^{\ln (a)}=a$
3) At some point, multiply your integrand (the fct you're integrating) by $\frac{\cos (t)}{\cos (t)}$
4) $\cos ^{2}(t)=1-\sin ^{2}(t)$
5) The substitution $u=\frac{1}{\sin (t)}$, then $d u=\frac{-\cos (t)}{\sin ^{2}(t)}$ and $\sin (t)=\frac{1}{u}$
6) $\frac{1}{1-\frac{1}{u^{2}}}=\frac{u^{2}}{u^{2}-1}$ (multiply top and bottom by u^{2})
7) The formula $\frac{u^{2}}{1-u^{2}}=\frac{1}{1-u^{2}}-1=\frac{1}{2(1-u)}+\frac{1}{2(1+u)}-1$
8) The formula $\ln (a)-\ln (b)=\ln \left(\frac{a}{b}\right)$
9) The formula $\frac{1}{2} \ln \left|\frac{1-z}{1+z}\right|=\operatorname{coth}^{-1}(z)$
10) Try to have a formula without $\frac{1}{\sin (t)}$, and for this use the fract that $\frac{\frac{1}{z}-1}{\frac{1}{z}+1}=\frac{1-z}{1+z}$
(d) Notice that the equation $y^{\prime \prime}-\tan (t) y^{\prime}+2 y=0$, although quite complicated, is still linear. What is the general solution of $y^{\prime \prime}-$ $\tan (t) y^{\prime}+2 y=0$? (no need to show your work here)
